Spatiotemporal properties of intracellular calcium signaling in osteocytic and osteoblastic cell networks under fluid flow.
نویسندگان
چکیده
Mechanical stimuli can trigger intracellular calcium (Ca(2+)) responses in osteocytes and osteoblasts. Successful construction of bone cell networks necessitates more elaborate and systematic analysis for the spatiotemporal properties of Ca(2+) signaling in the networks. In the present study, an unsupervised algorithm based on independent component analysis (ICA) was employed to extract the Ca(2+) signals of bone cells in the network. We demonstrated that the ICA-based technology could yield higher signal fidelity than the manual region of interest (ROI) method. Second, the spatiotemporal properties of Ca(2+) signaling in osteocyte-like MLO-Y4 and osteoblast-like MC3T3-E1 cell networks under laminar and steady fluid flow stimulation were systematically analyzed and compared. MLO-Y4 cells exhibited much more active Ca(2+) transients than MC3T3-E1 cells, evidenced by more Ca(2+) peaks, less time to the 1st peak and less time between the 1st and 2nd peaks. With respect to temporal properties, MLO-Y4 cells demonstrated higher spike rate and Ca(2+) oscillating frequency. The spatial intercellular synchronous activities of Ca(2+) signaling in MLO-Y4 cell networks were higher than those in MC3T3-E1 cell networks and also negatively correlated with the intercellular distance, revealing faster Ca(2+) wave propagation in MLO-Y4 cell networks. Our findings show that the unsupervised ICA-based technique results in more sensitive and quantitative signal extraction than traditional ROI analysis, with the potential to be widely employed in Ca(2+) signaling extraction in the cell networks. The present study also revealed a dramatic spatiotemporal difference in Ca(2+) signaling for osteocytic and osteoblastic cell networks in processing the mechanical stimulus. The higher intracellular Ca(2+) oscillatory behaviors and intercellular coordination of MLO-Y4 cells provided further evidences that osteocytes may behave as the major mechanical sensor in bone modeling and remodeling processes.
منابع مشابه
Osteocytic network is more responsive in calcium signaling than osteoblastic network under fluid flow.
Osteocytes, regarded as the mechanical sensor in bone, respond to mechanical stimulation by activating biochemical pathways and mediating the cellular activities of other bone cells. Little is known about how osteocytic networks respond to physiological mechanical stimuli. In this study, we compared the mechanical sensitivity of osteocytic and osteoblastic networks under physiological-related f...
متن کاملPrimary cilia in bone.
lization. This independence of calcium and PGE 2 has been reported previously and suggests that there are multiple mechanisms by which bone cells sense their mechanical environment. These findings are currently in press in the Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. by oscillatory fluid flow via intracellular calcium mobilization and activation of ...
متن کاملMAP kinase and calcium signaling mediate fluid flow-induced human mesenchymal stem cell proliferation.
Mechanical signals are important regulators of skeletal homeostasis, and strain-induced oscillatory fluid flow is a potent mechanical stimulus. Although the mechanisms by which osteoblasts and osteocytes respond to fluid flow are being elucidated, little is known about the mechanisms by which bone marrow-derived mesenchymal stem cells respond to such stimuli. Here we show that the intracellular...
متن کاملIntegrin Signaling and the Response of Osteocytes to Oscillatory Fluid Flow
+*Litzenberger, J B; *Tummala, P; *Jacobs, C R +*Veterans Administration Medical Center/Stanford University, Palo Alto, CA [email protected] INTRODUCTION Osteocytes are mechanosensitive cells in bone and are believed to be responsible for initiating and coordinating osteogenic and osteoclastic processes in vivo. Dynamic fluid flow has been shown to be a potent regulator of bone cell metabolis...
متن کاملFluid Flow Induced Calcium Response in Bone Cell Network.
In our previous work, bone cell networks with controlled spacing and functional intercellular gap junctions had been successfully established by using microcontact printing and self assembled monolayers technologies [Guo, X. E., E. Takai, X. Jiang, Q. Xu, G. M. Whitesides, J. T. Yardley, C. T. Hung, E. M. Chow, T. Hantschel, and K. D. Costa. Mol. Cell. Biomech. 3:95-107, 2006]. The present stud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bone
دوره 53 2 شماره
صفحات -
تاریخ انتشار 2013